我们的教案鼓励学生提出问题和探索知识,教案的适切性包括了对教育资源的充分利用,以提供丰富多彩的学习体验,以下是好美篇小编精心为您推荐的数学必修一教案8篇,供大家参考。
数学必修一教案篇1
学习目标
1、结合已学过的数学实例,了解归纳推理的含义;2、能利用归纳进行简单的推理,体会并认识归纳推理在数学发现中的作用、
2、结合已学过的数学实例,了解类比推理的含义;
3、能利用类比进行简单的推理,体会并认识合情推理在数学发现中的作用、
学习过程
一、课前准备
问题3:因为三角形的内角和是,四边形的内角和是,五边形的内角和是
……所以n边形的内角和是
新知1:从以上事例可一发现:
叫做合情推理。归纳推理和类比推理是数学中常用的合情推理。
新知2:类比推理就是根据两类不同事物之间具有
推测其中一类事物具有与另一类事物的性质的推理、
简言之,类比推理是由的推理、
新知3归纳推理就是根据一些事物的',推出该类事物的
的推理、归纳是的过程
例子:哥德巴赫猜想:
观察6=3+3,8=5+3,10=5+5,12=5+7,14=7+7,
16=13+3,18=11+7,20=13+7,……,
50=13+37,……,100=3+97,
猜想:
归纳推理的一般步骤
1通过观察个别情况发现某些相同的性质。
2从已知的相同性质中推出一个明确表达的一般性命题(猜想)。
※典型例题
例1用推理的形式表示等差数列1,3,5,7……2n-1,……的前n项和sn的归纳过程。
变式1观察下列等式:1+3=4=,
1+3+5=9=,
1+3+5+7=16=,
1+3+5+7+9=25=,
……
你能猜想到一个怎样的结论?
变式2观察下列等式:1=1
1+8=9,
1+8+27=36,
1+8+27+64=100,
……
你能猜想到一个怎样的结论?
例2设计算的值,同时作出归纳推理,并用n=40验证猜想是否正确。
变式:(1)已知数列的第一项,且,试归纳出这个数列的通项公式
例3:找出圆与球的相似之处,并用圆的性质类比球的有关性质、
圆的概念和性质球的类似概念和性质
圆的周长
圆的面积
圆心与弦(非直径)中点的连线垂直于弦
与圆心距离相等的弦长相等,
※动手试试
1、观察圆周上n个点之间所连的弦,发现两个点可以连一条弦,3个点可以连3条弦,4个点可以连6条弦,5个点可以连10条弦,由此可以归纳出什么规律?
2如果一条直线和两条平行线中的一条相交,则必和另一条相交。
3如果两条直线同时垂直于第三条直线,则这两条直线互相平行。
三、总结提升
※学习小结
1、归纳推理的定义、
2、归纳推理的一般步骤:①通过观察个别情况发现某些相同的性质;②从已知的相同性质中推出一个明确表述的一般性命题(猜想)、
3、合情推理仅是“合乎情理”的推理,它得到的结论不一定真,但合情推理常常帮我们猜测和发现新的规律,为我们提供证明的思路和方法
数学必修一教案篇2
一、教材分析
教材的地位和作用
期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫。同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响。
教学重点与难点
重点:离散型随机变量期望的概念及其实际含义。
难点:离散型随机变量期望的实际应用。
[理论依据]本课是一节概念新授课,而概念本身具有一定的抽象性,学生难以理解,因此把对离散性随机变量期望的概念的教学作为本节课的教学重点。此外,学生初次应用概念解决实际问题也较为困难,故把其作为本节课的教学难点。
二、教学目标
[知识与技能目标]
通过实例,让学生理解离散型随机变量期望的概念,了解其实际含义。
会计算简单的离散型随机变量的期望,并解决一些实际问题。
[过程与方法目标]
经历概念的建构这一过程,让学生进一步体会从特殊到一般的思想,培养学生归纳、概括等合情推理能力。
通过实际应用,培养学生把实际问题抽象成数学问题的能力和学以致用的数学应用意识。
[情感与态度目标]
通过创设情境激发学生学习数学的情感,培养其严谨治学的态度。在学生分析问题、解决问题的过程中培养其积极探索的精神,从而实现自我的价值。
三、教法选择
引导发现法
四、学法指导
“授之以鱼,不如授之以渔”,注重发挥学生的主体性,让学生在学习中学会怎样发现问题、分析问题、解决问题。
读书破万卷下笔如有神,以上就是差异网为大家带来的8篇《高一上册数学必修四教案》,希望对您有一些参考价值,更多范文样本、模板格式尽在差异网。
数学必修一教案篇3
教学目标
1。了解函数的单调性和奇偶性的概念,把握有关证实和判定的基本方法。
(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念。
(2)能从数和形两个角度熟悉单调性和奇偶性。
(3)能借助图象判定一些函数的单调性,能利用定义证实某些函数的单调性;能用定义判定某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程。
2。通过函数单调性的证实,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从非凡到一般的数学思想。
3。通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度。
教学建议
一、知识结构
(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系。
(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像。
二、重点难点分析
(1)本节教学的重点是函数的单调性,奇偶性概念的形成与熟悉。教学的难点是领悟函数单调性,奇偶性的本质,把握单调性的证实。
(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它。这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫。单调性的证实是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证实,也没有意识到它的重要性,所以单调性的证实自然就是教学中的难点。
三、教法建议
(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数。反比例函数图象出发,回忆图象的增减性,从这点感性熟悉出发,通过问题逐步向抽象的定义靠拢。如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来。在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的熟悉就可以融入其中,将概念的形成与熟悉结合起来。
(2)函数单调性证实的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,非凡是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律。
函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来。经历了这样的过程,再得到等式时,就比较轻易体会它代表的是无数多个等式,是个恒等式。关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件。
数学必修一教案篇4
教学目标
1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。
2、过程与方法目标:按照创设情景,提出问题→剖析归纳证明→几何解释→应用(最值的求法、实际问题的解决)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。
3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。
教学重难点
1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);
2、利用基本不等式求解实际问题中的最大值和最小值。
教学过程
一、创设情景,提出问题;
设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实。基于此,设置如下情境:
上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。
[问]你能在这个图中找出一些相等关系或不等关系吗?
本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式
在此基础上,引导学生认识基本不等式。
三、理解升华:
1、文字语言叙述:
两个正数的算术平均数不小于它们的几何平均数。
2、联想数列的知识理解基本不等式
已知a,b是正数,a是a,b的等差中项,g是a,b的正的等比中项,a与g有无确定的大小关系?
两个正数的等差中项不小于它们正的等比中项。
3、符号语言叙述:
4、探究基本不等式证明方法:
[问]如何证明基本不等式?
(意图在于引领学生从感性认识基本不等式到理性证明,实现从感性认识到理性认识的升华,前面是从几何图形中的面积关系获得不等式的,下面用代数的思想,利用不等式的性质直接推导这个不等式。)
方法一:作差比较或由
展开证明。
方法二:分析法(完成课本填空)
设计依据:课本是学生了解世界的窗口和工具,所以,课本必须成为学生赖以学会学习的文本。在教学中要让学生学会认真看书、用心思考,养成讲讲议议、
动手动笔、仔细观察、用心体会的好习惯,真正学会读“数学书”。
点评:证明方法叫做分析法,实际上是寻找结论的充分条件,执果索因的一种思维方法。
5、探究基本不等式的几何意义:
借助初中阶段学生熟知的几何图形,引导学生
几何解释实质可认为是:在同一半圆中,半径不小于半弦(直径是最长的弦);或者认为是,直角三角形斜边的一半不小于斜边上的高。
四、探究归纳
下列命题中正确的是
结论:
若两正数的乘积为定值,则当且仅当两数相等时,它们的和有最小值;
若两正数的和为定值,则当且仅当两数相等时,它们的乘积有最大值。
简记为:“一正、二定、三相等”。
五、领悟练习:
公式应用之二:(最优化问题)
设计意图:新颖有趣、简单易懂、贴近生活的问题,不仅极大地增强学生的兴趣,拓宽学生的视野,更重要的是调动学生探究钻研的兴趣,引导学生加强对生活的关注,让学生体会:数学就在我们身边的生活中
(1)在学农期间,生态园中有一块面积为100m2的矩形茶地,为了保护茶叶的健康生长,学校决定用篱笆围起来,问这个矩形的长、宽各为多少时,所用篱笆最短。最短的篱笆是多少?
(2)现在学校仓库有一段长为36m的篱笆,要围成一个矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大。最大面积是多少?
六、反思总结,整合新知:
通过本节课的学习你有什么收获?取得了哪些经验教训?还有哪些问题需要
请教?
设计意图:通过反思、归纳,培养概括能力;帮助学生总结经验教训,巩固知识技能,提高认知水平。
老师根据情况完善如下:
两种思想:数形结合思想、归纳类比思想。
三个注意:基本不等式求函数的最大(小)值是注意:“一正二定三相等”
数学必修一教案篇5
?平面向量的基本定理及坐标表示》教案
教学准备
教学目标
平面向量复习
教学重难点
平面向量复习
教学过程
平面向量复习
知识点提要
一、向量的概念
1、既有又有的量叫做向量。用有向线段表示向量时,有向线段的长度表示向量的,有向线段的箭头所指的方向表示向量的
2、叫做单位向量
3、的向量叫做平行向量,因为任一组平行向量都可以平移到同一条直线上,所以平行向量也叫做。零向量与任一向量平行
4、且的向量叫做相等向量
5、叫做相反向量
二、向量的表示方法:几何表示法、字母表示法、坐标表示法
三、向量的加减法及其坐标运算
四、实数与向量的乘积
定义:实数 λ 与向量 的积是一个向量,记作λ
五、平面向量基本定理
如果e1、e2是同一个平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2 ,其中e1,e2叫基底
六、向量共线/平行的充要条件
七、非零向量垂直的充要条件
八、线段的定比分点
设是上的 两点,p是上_________的任意一点,则存在实数,使_______________,则为点p分有向线段所成的比,同时,称p为有向线段的定比分点
定比分点坐标公式及向量式
九、平面向量的数量积
(1)设两个非零向量a和b,作oa=a,ob=b,则∠aob=θ叫a与b的夹角,其范围是[0,π],|b|cosθ叫b在a上的投影
(2)|a||b|cosθ叫a与b的数量积,记作a·b,即 a·b=|a||b|cosθ
(3)平面向量的数量积的坐标表示
十、平移
典例解读
1、给出下列命题:①若|a|=|b|,则a=b;②若a,b,c,d是不共线的四点,则ab= dc是四边形abcd为平行四边形的充要条件;③若a=b,b=c,则a=c;④a=b的充要条件是|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c
其中,正确命题的序号是______
2、已知a,b方向相同,且|a|=3,|b|=7,则|2a-b|=____
3、若将向量a=(2,1)绕原点按逆时针方向旋转 得到向量b,则向量b的坐标为_____
4、下列算式中不正确的是( )
(a) ab+bc+ca=0 (b) ab-ac=bc
(c) 0·ab=0 (d)λ(μa)=(λμ)a
5、若向量a=(1,1),b=(1,-1),c=(-1,2),则c=( )
?函数y=x2的图象按向量a=(2,1)平移后得到的图象的函数表达式为( )
(a)y=(x-2)2-1 (b)y=(x+2)2-1 (c)y=(x-2)2+1 (d)y=(x+2)2+1
7、平面直角坐标系中,o为坐标原点,已知两点a(3,1),b(-1,3),若点c满足oc=αoa+βob,其中a、β∈r,且α+β=1,则点c的轨迹方程为( )
(a)3x+2y-11=0 (b)(x-1)2+(y-2)2=5
(c)2x-y=0 (d)x+2y-5=0
8、设p、q是四边形abcd对角线ac、bd中点,bc=a,da=b,则 pq=_________
9、已知a(5,-1) b(-1,7) c(1,2),求△abc中∠a平分线长
10、若向量a、b的坐标满足a+b=(-2,-1),a-b=(4,-3),则a·b等于( )
(a)-5 (b)5 (c)7 (d)-1
11、若a、b、c是非零的平面向量,其中任意两个向量都不共线,则( )
(a)(a)2·(b)2=(a·b)2 (b)|a+b|>|a-b|
(c)(a·b)·c-(b·c)·a与b垂直 (d)(a·b)·c-(b·c)·a=0
12、设a=(1,0),b=(1,1),且(a+λb)⊥b,则实数λ的值是( )
(a)2 (b)0 (c)1 (d)2
16、利用向量证明:△abc中,m为bc的中点,则 ab2+ac2=2(am2+mb2)
17、在三角形abc中, =(2,3), =(1,k),且三角形abc的一个内角为直角,求实数k的值
18、已知△abc中,a(2,-1),b(3,2),c(-3,-1),bc边上的高为ad,求点d和向量
数学必修一教案篇6
第一课时 1.1.1 任意角
教学要求:理解任意大小的角正角、负角和零角,掌握终边相同的角、象限角、区间角、终边在坐标轴上的角.
教学重点:理解概念,掌握终边相同角的表示法.
教学难点:理解角的任意大小.
教学过程:
一、复习准备:
1.提问:初中所学的角是如何定义?角的范围?
(角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的`图形;0°~360°)
2.讨论:实际生活中是否有些角度超出初中所学的范围? → 说明研究推广角概念的必要性
(钟表;体操,如转体720°;自行车车轮;螺丝扳手)
二、讲授新课:
1.教学角的概念:
① 定义正角、负角、零角:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,未作任何旋转所形成的角叫零角.
② 讨论:推广后角的大小情况怎样? (包括任意大小的正角、负角和零角)
③ 示意几个旋转例子,写出角的度数.
④ 如何将角放入坐标系中?→定义第几象限的角.
(概念:角的顶点与原点重合,角的始边与 轴的非负半轴重合. 那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角. )
⑤ 练习:试在坐标系中表示300°、390°、-330°角,并判别在第几象限?
⑥ 讨论:角的终边在坐标轴上,属于哪一个象限?
结论:如果角的终边在坐标轴上,就认为这个角不属于任何一个象限,称为非象限角.
口答:锐角是第几象限角?第一象限角一定是锐角吗?再分别就直角、钝角来回答这两个问题.
⑦ 讨论:与60°终边相同的角有哪些?都可以用什么代数式表示?
与α终边相同的角如何表示?
⑧ 结论:与α角终边相同的角,都可用式子×360°+α表示,∈z,写成集合呢?
⑨ 讨论:给定顶点、终边、始边的角有多少个?
注意:终边相同的角不一定相等;但相等的角,终边一定相同;终边相同的角有无数多个,它们相差360°的整数倍
2.教学例题:
① 出示例1:在0°~360°间,找出下列终边相同角:-150°、1040°、-940°。(讨论计算方法:除以360求正余数 →试练→订正)
② 出示例2:写出与下列终边相同的角的集合,并写出-720°~360°间角。120°、-270°、1020°(讨论计算方法:直接写,分析的取值 →试练→订正)
③ 讨论:上面如何求的值? (解不等式法)
④ 练习:写出终边在x轴上的角的集合,轴上呢?坐标轴上呢?第一象限呢?
⑤ 出示例3:写出终边直线在=x上的角的集合s, 并把s中适合不等式的元素 写出来. (师生共练→小结)
3. 小结:角的推广;象限角的定义;终边相同角的表示;终边落在坐标轴时等;区间角表示。
三、巩固练习:
1. 写出终边在第一象限的角的集合?第二象限呢?第三象限呢?第四象限呢?直线=-x呢?
2. 作业:书p6 练习 3 ③④、4、5题。
第二课时:1.1.2 弧度制(一)
教学要求:掌握弧度制的定义,学会弧度制与角度制互化,并进而建立角的集合与实数集r一一对应关系的概念。
教学重点:掌握换算。
教学难点:理解弧度意义。
教学过程:
一、复习准备:
1. 写出终边在x轴上角的集合 。
2. 写出终边在轴上角的集合 。
3. 写出终边在第三象限角的集合 。
4. 写出终边在第一、三象限角的集合 。
5. 什么叫1°的角?计算扇形弧长的公式是怎样的?
二、讲授新课:
1. 教学弧度的意义:
① 如图:∠aob所对弧长分别为l、l’,半径分别为r、r’,求证: = 。
② 讨论: 是否为定值?其值与什么有关系?→结论: = =定值。
③ 讨论: 在什么情况下为值为1? 是否可以作为角的度量?
④ 定义:长度等于半径长的弧所对的圆心角叫1弧度的角. 用rad表示,读作弧度。
⑤ 计算弧度:180°、360°→ 思考:-360°等于多少弧度?
⑥ 探究:完成书p7 表1.1-1后,讨论:半径为r的圆心角α所对弧长为l,则α弧度数=?
⑦ 规定:正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0. 半径为r的圆心角α所对弧长为l,则α弧度数的绝对值为|α|= . 用弧度作单位来度量角的制度叫弧度制。
⑧ 讨论:由弧度数的定义可以得到计算弧长的公式怎样?
⑨ 讨论:1度等于多少弧度?1弧度等于多少度?→度表示与弧度表示有啥不同?
-720°的圆心角、弧长、弧度如何看?
2 .教学例题:
①出示例1:角度与弧度互化:
分析:如何依据换算公式?(抓住:180°=p rad) → 如何设计算法?
→ 计算器操作: 模式选择 mode mode 1(2);输入数据;功能键shift drg 1(2)=
② 练习:角度与弧度互化:0°;30°;45°; ; ;120°;135°;150°;
③ 讨论:引入弧度制的意义?(在角的集合与实数的集合之间建立一种一一对应的关系)
④ 练习:用弧度制表示下列角的集合:终边在x轴上;终边在轴上。
3. 小结:弧度数定义;换算公式(180°=p rad);弧度制与角度制互化。
三、巩固练习:
1. 教材p10 练习1、2题。
2. 用弧度制表示下列角的集合:终边在直线=x; 终边在第二象限; 终边在第一象限。
3. 作业:教材p11 5、7、8题。
第三课时:1.1.2 弧度制(二)
教学要求:更进一步理解弧度的意义,能熟练地进行弧度与角度的换算。掌握弧长公式,能用弧度表示终边相同的角、象限角和终边在坐标轴上的角。掌握并运用弧度制表示的弧长公式、扇形面积公式。
教学重点:掌握扇形弧长公式、面积公式。
教学难点:理解弧度制表示。
教学过程:
一、复习准备:
1. 提问:什么叫1弧度的角?1度等于多少弧度?1弧度等于多少度?扇形弧长公式?
2. 弧度与角度互换:- π、 π、-210°、75°
3. 口答下列特殊角的弧度数:0°、30°、45°、60°、90°、120°、135°、…
二、讲授新课:
1. 教学例题:
① 出示例:用弧度制推导:s = lr;
分析:先求1弧度扇形的面积( πr )→再求弧长为l、半径为r的扇形面积?
方法二:根据扇形弧长公式、面积公式,结合换算公式转换.
② 练习:扇形半径为45,圆心角为120°,用弧度制求弧长、面积.
③ 出示例:计算sin 、tan1.5、cs
(口答方法→共练→小结:换算为角度;计算器求)
② 练习:求 、 、 的正弦、余弦、正切。
2. 练习:
①. 用弧度制写出与下列终边相同的角,并求0~2π间的角。
π、-675°
② 用弧度制表示终边在x轴上角的集合、终边在轴上角的集合?终边在第三象限角的集合?
③ 讨论:α=×360°+ 与β=2π+30°是否正确?
④ α与- 的终边相同,且-2πt;αt;2π,则α= 。
⑤ 已知扇形aob的周长是6c,该扇形的中心角是1弧度,求该扇形的面积。
解法:设扇形的半径为r,弧长为l,列方程组而求.
3. 小结:
扇形弧长公式、面积公式;弧度制的运用;计算器使用。
三、巩固练习:
1. 时间经过2小时30分,时针和分针各转了多少弧度?
2. 一扇形的中心角是54°,它的半径为20c,求扇形的周长和面积。
3. 已知角α和角β的差为10°,角α和角β的和是10弧度,则α、β的弧度数分别是 。
4. 作业:教材p10 练习4、5、6题。
数学必修一教案篇7
教学目标
1、数列求和的综合应用
教学重难点
2、数列求和的综合应用
教学过程
典例分析
3、数列{an}的前n项和sn=n2-7n-8,
(1)求{an}的通项公式
(2)求{|an|}的前n项和tn
4、等差数列{an}的公差为,s100=145,则a1+a3 + a5 + …+a99=
5、已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则|m-n|=
6、数列{an}是等差数列,且a1=2,a1+a2+a3=12
(1)求{an}的通项公式
(2)令bn=anxn ,求数列{bn}前n项和公式
7、四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数
8、在等差数列{an}中,a1=20,前n项和为sn,且s10= s15,求当n为何值时,sn有最大值,并求出它的最大值
?已知数列{an},an∈n,sn= (an+2)2
(1)求证{an}是等差数列
(2)若bn= an-30 ,求数列{bn}前n项的最小值
0、已知f(x)=x2 -2(n+1)x+ n2+5n-7 (n∈n)
(1)设f(x)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列
(2设f(x)的图象的顶点到x轴的距离构成数列{dn},求数列{dn}的前n项和sn.
11 。购买一件售价为5000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率0.8%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)
12 。某商品在最近100天内的价格f(t)与时间t的
函数关系式是f(t)=
销售量g(t)与时间t的函数关系是
g(t)= -t/3 +109/3 (0≤t≤100)
求这种商品的日销售额的最大值
注:对于分段函数型的应用题,应注意对变量x的取值区间的讨论;求函数的最大值,应分别求出函数在各段中的最大值,通过比较,确定最大值
数学必修一教案篇8
?三角函数的图象与性质》教案
学准备
教学目标
1、 知识与技能
(1)理解并掌握正弦函数的定义域、值域、周期性、最大(小)值、单调性、奇偶性;
(2)能熟练运用正弦函数的性质解题。
2、 过程与方法
通过正弦函数在r上的图像,让学生探索出正弦函数的性质;讲解例题,总结方法,巩固练习。
3、 情感态度与价值观
通过本节的学习,培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。
教学重难点
重点: 正弦函数的性质。
难点: 正弦函数的性质应用。
教学工具
投影仪
教学过程
?创设情境,揭示课题】
同学们,我们在数学一中已经学过函数,并掌握了讨论一个函数性质的几个角度,你还记得有哪些吗?在上一次课中,我们已经学习了正弦函数的y=sinx在r上图像,下面请同学们根据图像一起讨论一下它具有哪些性质?
?探究新知】
让学生一边看投影,一边仔细观察正弦曲线的图像,并思考以下几个问题:
(1) 正弦函数的定义域是什么?
(2) 正弦函数的值域是什么?
(3) 它的最值情况如何?
(4) 它的正负值区间如何分?
(5) ?(x)=0的解集是多少?
师生一起归纳得出:
1. 定义域:y=sinx的定义域为r
2. 值域:引导回忆单位圆中的正弦函数线,结论:|sinx|≤1(有界性)
再看正弦函数线(图象)验证上述结论,所以y=sinx的值域为[-1,1]
课后小结
归纳整理,整体认识
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及的主要数学思想方法有哪些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
课后习题
作业:习题1—4第3、4、5、6、7题。
板书
略
数学必修一教案8篇相关文章: