在课后及时反思自我,才能进一步提升教学水平,作为教师一定都有写过教学反思吧,教学反思也是能够看出一个教师能力大小的重要文件,下面是好美篇小编为您分享的数与计算教学反思推荐5篇,感谢您的参阅。
数与计算教学反思篇1
这节课的内容是“小数加减法的简便计算”,是节计算课,但主要是让学生自己验证两条规律:整数的加法运算定律同样适用于小数,以及整数的减法运算性质也同样适用于小数。之后灵活运用规律进行简便计算。
上课开始,我先让学生进行口算的训练,目的是让学生观察后发现这些数字的'特征,得出结论:小数加法,可以通过尾数相加凑整;小数减法,可以通过尾数相减凑整。这为小数的简便计算奠定了一定的基础。
之后,我抓住学生有利的观察结果,引导学生对三个整数算式进行数字观察,学生的思路慢慢打开,我趁机询问,这用到了整数的什么规律?在学生的大脑里,过去的知识慢慢呈现,一个接一个补充地更加完整。
顺着学生的热情高涨,我抛出了一个问题:六一节前夕,东东准备买四样食品各1份,价钱分别是:4.38元、17.3元、0.62元、2.7元。问东东一共应付多少元?我没有急于让学生计算,而是提出了3个问题:你能列出综合算式吗?如果请你计算,你会算吗?你能想出几种不同的算法?学生在我的引导下,纷纷动脑筋,想算法。最后我根据学生的思路,把全班分成两个组进行比赛。明显发现运用加法运算定律计算的那个组算得又对又快。由于观察计算结果相同,从而归纳出整数加法运算定律同样适用于小数。
有了加法运算定律可以简便计算作铺垫,学生对于小数减法,很自然得也想到能不能利用减法运算性质来简便计算。通过教学例二,学生一尝试,发现也是成立的。于是经过填一填、判一判、算一算几个环节来强化新知。最后综合运用所学的知识,来解决生活中的小数加减法简便计算问题。
数与计算教学反思篇2
在
1、例1第二种算法教学失败。
教材例1共呈现两种不同的算法,第一种算法直接利用插图中的数据,而且还列出了算式,学生只需完成计算即可。第二种算法教材只提示了可以把它分成两个完全一样的梯形,列式则完全放手让学生独立尝试。由于这种解法梯形的下底、高都无法直接由图中得出,因此步骤较多。在教学中,我是引导学生们先分析得出第一种解法并正确列出算式后再开书完成填空,并根据方法提示,尝试写出第二种算法。殊不知真正需要我引导分析的却是第二种。课下与学生困生交谈中了解到其实在昨天预习时,第一种方法我都已经会了,但今天听您讲了第二种算法,我还是不明白。
我也困惑,当学生已经掌握既简单又易懂的方法后,他们为什么还要去探索这么复杂的算法呢?没有动力的探索又能激起学生多大的学习热情呢?
【再教设计】
再教时我会先引导学生先分析第二种解法,并列出正确算式,然后再放手让学生探索还有没有更简洁更易懂的方法。
2、作业的格式教学失败。
教材列的是综合算式,我在指导练习时也是按教材格式书写的板书。但在作业中,我却要求大家都用分步解答。由于我的'示范作用不到位,所以作业虽然正确率较高,但格式却是各具特色,很不统一。在这一失误中,让我常常体会到其身正,不令而行;其身不正,虽令不从。
其实我要求学生用分步解答,主要基于以下几点考虑:1、分步列式时是先写字母公式再代入求值,这样不仅可以巩固所学面积计算公式,而且可以有效防止学生列式出错。2、在考试中如果列综合算式,无论是写错一个数据还是少了2均视为全错。可如果列分步则不同,可以按步骤适当给分。(呵呵,有点应试教育的思想在作祟)。
【再教设计】
要求学生列分步解答,那么教学时我一定要按照自己所规定的格式为学生作好示范,并向学生解释这样做的理由。只有当我的理由足以使他们信服,我的行为足以成为他们的表率时,我想推进起来可能会顺畅一些吧
困惑:当把图形变形后的列式该如何评价?
有学生将例2第二种算法中的两个完全一样的梯形通过旋转平移变成一个平行四边形。他们的列式与第一种算法的步骤一样多,也只需要4步。即(5+2+5)(52)这种列式可行吗?
组合图形是由几个简单的图形组合而成的,一般是要将若干个简单图形的面积相加(或相差)求的,那么这种经过转化只需用简单图形面积公式求的结果的方法可行吗?
数与计算教学反思篇3
今天的教学比较失败,原因在于没有深入的研究教材,没有把握学生的思维脉搏。只是按照教案执行下去,因此,在教学结束后,留下不少的遗憾。回顾一下,主要有这两个地方没有处理好:
一、 简便算法中商的处理不够到位:
课堂结束后,与学生交流的过程中了解到,有的学生对今天的学习内容有一些糊涂的地方没有搞清。例如900÷50,竖式上900个位上的0去掉后,为什么不要在商的个位上写“0”了。
分析原因:
没有沟通900÷50与90÷5之间的联系,没有充分让学生思考为什么商的个位上不用写0的原因。
亡羊补牢:
应该通过思考、组织讨论这个问题达成共识:900÷50根据商不变的规律,它的商与90÷5的商相同,所以去掉0后实际上算的是90÷5的商。因此900个位上的0上面不需要再商0了。
二、 简便算法中余数的处理不够到位:
在教学900÷40时,因为预设不充分,在学生出现900÷40的.竖式中出现了余数写成20时,没有充分的探究这样写是否正确,而一味考虑学生可能会忘记在横式的余数中忘记写0而作了错误的引导。结果课后有学生表示疑惑,既然40当作4来除,那么余数如果是20的话不是比除数大了吗?
亡羊补牢:在上面分析商末尾是否添0的基础上引导学生分析此题竖式最后的余数应该写几,但是横式上的余数应该写几,明确规范的书写方法,进行强化。
数与计算教学反思篇4
1、本节课我在设计时分成了两种情况:计算当天的经过时间、计算隔一天的经过时间。在教学时两种情况我都要求学生先画线段图然后再计算,这样做的确培养了学生画线段图的能力,然而我却忽视了老师应让学生感知在做数学题时需要择优选择,选择最简便的方式解决问题,在计算当天的经过时间时我们发现画线段图和直接用结束的时间减开始的时间这两种算法当然是后者更容易些。我想我课前对本节课的把控还是不够好,然而学生的数学思维能力正是要在这些小小的细节中体现,今后我在上课前还需对课上的每一环节都认真研究。
2、讲解线段图时,我并没有讲解清楚、讲解透彻如何观察线段图算出经过时间,我看似教给学生了如何画、观察线段图,然而计算时还是走的老路——结束时间减开始时间。这是由于我在课前自己就没有掌握如何观察线段图计算时间的精髓,今后我还需注意上课前一定要多研读教参、教材,把握不住的多向老教师请教。
3、给学生展示自己的机会太少。我讲课的短处一直都是总喜欢自己讲解,总认为学生不能独立完成,虽然一直都在注意,尽量去改正可是一站在讲台上还是控制不住自己。今后为我应多多给孩子表现的机会,相信学生能够完成,课上也要多多展示学生的想法,抓住学生的生成并能利用好学生的生成。
4、在平时教学中应时刻清楚本节课将要培养学生哪一方面的能力,这样在课上教师就可以有的放矢。
数与计算教学反思篇5
三角形的面积计算,是在学生掌握了平行四边形面积计算的基础上教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。因此,本节课教学中,充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的`机会,使他成为知识的发现者、创造者,培养学生自我探究和实践能力。
在推导三角形面积计算公式时,通过小组合作,让学生用两个完全一样的三角形拼一拼,看一看能拼成什么图形,然后引导学生思考讨论:三角形与你拼成的平行四边形有什么联系?引导学生发现每个三角形的面积是平行四边形的一半。通过实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,知其所以然”, 在活动中发展,学得主动、扎实,思维能力、空间感受能力、动手操作能力都得到锻炼和提高。
在本课教学中,也存在一些不足之处,个别学生没有准备学具,不能动手操作,个别学困生手中拿着三角形无从下手,不知如何进行转化,在推导验证过程中也只是被动地接受。
数与计算教学反思推荐5篇相关文章:
★ 位置教学反思5篇
★ 西北教学反思5篇